Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Li Shao, Steven J. Geib and N. John Cooper*

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA

Correspondence e-mail: cooper@fcas.pitt.edu

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.036$
ωR factor $=0.101$
Data-to-parameter ratio $=26.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A potassium cryptate-2,2,2 salt of tricarbonyl $\boldsymbol{\eta}^{4}$-cyclopentadiene)manganese

Use of $\left[\mathrm{Mn}\left(\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mathrm{CO})_{3}\right]^{-}$prepared by anthracenide reduction of $\left[\mathrm{Mn}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mathrm{CO})_{3}\right] \mathrm{PF}_{6}$ provides access to the title compound, (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)potassium tricarbonyl(cyclopentadiene)manganate(I), $\left[\mathrm{K}\left(\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}\right)\right]\left[\mathrm{Mn}\left(\mathrm{C}_{5} \mathrm{H}_{6}\right)(\mathrm{CO})_{3}\right]$, by reaction of $\left[\mathrm{Mn}\left(\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mathrm{CO})_{3}\right]^{-}$with excess of the cyclopentadiene monomer $\left(\mathrm{C}_{5} \mathrm{H}_{6}\right)$ at 195 K . In the title compound, there is octacoordination of potassium by two N and six O atoms of the 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane and η^{4}-coordination of the diene in an envelope conformation to the $\mathrm{Mn}(\mathrm{CO})_{3}{ }^{-}$center, with the methylene group folded out of the coordination plane.

Comment

We have previously reported that the η^{4}-benzene ligand in $\left[\mathrm{Mn}\left(\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mathrm{CO})_{3}\right]^{-}$is activated with respect to substitution of the η^{4}-benzene by polyaromatic hydrocarbons to give products such as the η^{4}-naphthalene complex $\left[\mathrm{Mn}\left(\eta^{4}-\right.\right.$ $\left.\left.\mathrm{C}_{10} \mathrm{H}_{8}\right)(\mathrm{CO})_{3}\right]^{-}$(Thompson et al., 1991). η^{4}-Benzene substitution by anthracene is much slower than substitution by naphthalene (Lee et al., 1995), and $\left[\mathrm{Mn}\left(\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mathrm{CO})_{3}\right]^{-}$ prepared by anthracenide reduction can, therefore, provide access to the title compound, $(4,7,13,16,21,24$-hexaoxa- 1,10 diazabicyclo[8.8.8]hexacosane)potassium tricarbonyl(cyclopentadiene)manganate(I), by competitive substitution with excess cyclopentadiene monomer $\left(\mathrm{C}_{5} \mathrm{H}_{6}\right)$. To the best of our knowledge, while there are several crystal structures of η^{4}-complexes of heterosubstituted cyclic dienes with manganese(I) (Lindner et al., 1979, 1981a,b, 1988, 1996; Chen et al., 1996), the title compound, (I), is the first crystallographically characterized $\left[\mathrm{Mn}\left(\eta^{4} \text {-diene }\right)(\mathrm{CO})_{3}\right]^{-}$complex of an aliphatic diene (Fig. 1), although a methyl-substituted analog has been spectroscopically characterized prior to this study (Lee \& Cooper, 1991).

(I)

The $\mathrm{C}_{5} \mathrm{H}_{6}$ ligand coordinated to $\mathrm{Mn}(\mathrm{CO})_{3}{ }^{-}$has an envelope conformation (Duax et al., 1976) with the CH_{2} bent out of the

Received 23 October 2002
Accepted 9 January 2003
Online 24 January 2003
© 2003 International Union of Crystallography Printed in Great Britain - all rights reserved
plane by $34.6(1)^{\circ}$. There is a non-crystallographic plane of symmetry that includes the CH_{2} group and the Mn center. This contrasts sharply with the structure of uncoordinated $\mathrm{C}_{5} \mathrm{H}_{6}$ (Liebling \& Marsh, 1965), in which the $\mathrm{C}_{5} \mathrm{H}_{6}$ ring is almost planar but lacks a plane of symmetry that would render the methylene H atoms equivalent.

Experimental

Reactions and manipulations were carried out under a dry, oxygenfree nitrogen atmosphere using standard Schlenk and cannula techniques or a dry box. A 0.2 M potassium anthracenide/THF solution ($7.3 \mathrm{ml}, 1.46 \mathrm{mmol}, 2.1$ equivalents per Mn metal) was added to a slurry of $0.25 \mathrm{~g}(0.69 \mathrm{mmol})\left[\mathrm{Mn}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mathrm{CO})_{3}\right] \mathrm{PF}_{6}$ in 15 ml THF at 195 K to form a yellow-green slurry. After 15 min , excess distilled cyclopentadiene $\mathrm{C}_{5} \mathrm{H}_{6}$ monomer (2.0 ml) was added to the stirred solution to give a yellow slurry. The yellow solution was collected by filtration at 195 K and mixed with $0.21 \mathrm{~g}(0.56 \mathrm{mmol}) 4,7,13,16,21,24-$ hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane. Solvent THF was removed under vacuum at ambient temperature, and the residue rinsed with pentane (50 ml) and toluene (50 ml), and then redissolved in a small amount of DME and layered with $\mathrm{Et}_{2} \mathrm{O}$, to give orange crystals suitable for diffraction studies (0.26 g , yield 41%) at 243 K . IR absorptions for the title compound [ν_{co} only, THF, 1925 (s), 1830 $\left.(s), 1811(s) \mathrm{cm}^{-1}\right]$ are in the same range as those of $\left[\mathrm{Mn}\left(\eta^{4}\right.\right.$-cyclohexadiene $\left.)(\mathrm{CO})_{3}\right]^{-}$(Brookhart et al., 1983) and $\left[\mathrm{Mn}\left(\eta^{4}\right.\right.$-butadiene)(CO) $\left.)_{3}\right]^{-}$(Brookhart et al., 1987), while the ${ }^{1} \mathrm{H}$ NMR spectrum of (I) has three peaks [in $\mathrm{CD}_{3} \mathrm{CN}, 273 \mathrm{~K}, \delta 5.0(s, 2 \mathrm{CH}), 2.70(s$, $\left.2 \mathrm{CH}), 1.86\left(s, \mathrm{CH}_{2}\right)\right]$ for the $\mathrm{C}_{5} \mathrm{H}_{6}$ ligand. This implies that the endoand exo-H of the CH_{2} cannot be distinguished. A similar observation has been reported for $\left[\mathrm{Mn}\left(\eta^{4} \text {-cyclohexadiene }\right)(\mathrm{CO})_{3}\right]^{-}$. In the ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$-coupled NMR spectrum, the different coupling constants (121.3 and 136.6 Hz) of the two H atoms on the CH_{2} peak ($\delta 46.03$), did, however, finally distinguish between the endo- and exo-H.

Crystal data

$\left[\mathrm{K}\left(\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}\right)\right]\left[\mathrm{Mn}\left(\mathrm{C}_{5} \mathrm{H}_{6}\right)(\mathrm{CO})_{3}\right]$	$Z=2$
$M_{r}=620.66$	$D_{x}=1.386 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=11.5443(5) \AA$	Cell parameters from 6417
$b=11.7528(5) \AA$	reflections
$c=12.5534(6) \AA$	$\theta=2.0-30.0^{\circ}$
$\alpha=110.307(1)^{\circ}$	$\mu=0.64 \mathrm{~mm}^{\circ}$
$\beta=109.523(1)^{\circ}$	$T=150(2) \mathrm{K}$
$\gamma=91.279(1)^{\circ}$	Block, yellow
$V=1486.98(11) \AA^{3}$	$0.38 \times 0.35 \times 0.35 \mathrm{~mm}$

Data collection

Bruker AXS SMART APEX

 diffractometerω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.794, T_{\text {max }}=0.808$
19143 measured reflections

> 9907 independent reflections 9068 reflections with $I>\sigma(I)$
> $R_{\text {int }}=0.016$
> $\theta_{\max }=32.5^{\circ}$
> $h=-17 \rightarrow 17$
> $k=-17 \rightarrow 17$
> $l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.101$
$S=1.26$
9907 reflections
376 parameters

Figure 1
The molecular structure of the title compound. Ellipsoids are shown at the 50% probability level.

Table 1
Selected geometric parameters (\AA).

$\mathrm{Mn}-\mathrm{C} 2$	$1.778(1)$	$\mathrm{O} 2-\mathrm{C} 2$	$1.166(2)$
$\mathrm{Mn}-\mathrm{C} 3$	$1.780(1)$	$\mathrm{O} 3-\mathrm{C} 3$	$1.161(1)$
$\mathrm{Mn}-\mathrm{C} 1$	$1.785(1)$	$\mathrm{C} 4-\mathrm{C} 8$	$1.516(2)$
$\mathrm{Mn}-\mathrm{C} 7$	$2.083(1)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.516(2)$
$\mathrm{Mn}-\mathrm{C} 6$	$2.088(1)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.424(2)$
$\mathrm{Mn}-\mathrm{C} 5$	$2.149(1)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.417(2)$
$\mathrm{Mn}-\mathrm{C} 8$	$2.149(1)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.424(2)$
$\mathrm{C} 1-\mathrm{O} 1$	$1.161(2)$		

Idealized atomic positions were calculated for the cryptate H atoms $\left[d(\mathrm{C}-\mathrm{H})=0.96 \AA, U_{\text {iso }}=1.2 U_{\text {eq }}\right.$ of the attached atom]. The remaining H atoms were located from a difference Fourier map and refined isotropically.

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the National Science Foundation for financial support.

References

Brookhart, M., Lamanna, W. \& Pinhas, A. R. (1983). Organometallics, 2, 638649.

Brookhart, M., Noh, S. K. \& Timmers, F. J. (1987). Organometallics, 6, 18291831.

Bruker (2001). SMART (Version 5.625) and SAINT (Version 5.625) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, J., Young, V. G. Jr. \& Angelici, R. J. (1996). Organometallics, 15, 325331.

Duax, W. L., Weeks, C. M. \& Roher, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel \& N. Allinger, pp. 271-383. New York: John Wiley.
Lee, S. \& Cooper, N. J. (1991). J. Am. Chem. Soc. 113, 716-717.
Lee, S., Geib, S. J. \& Cooper, N. J. (1995). J. Am. Chem. Soc. 117, 9572-9573.
Liebling, G. \& Marsh, R. E. (1965). Acta Cryst. 19, 202-205.
Lindner, E., Auch, K., Hiller, W. \& Fawzi, R. (1988). Organometallics, 7, 402405.

metal-organic papers

Lindner, E., Bosch, E., Fawzi, R., Steimann, M., Mayer, H. A. \& Gierling, K (1996). Chem. Ber. 129, 945-951

Lindner, E., Rau, A. \& Hoehne, S. (1979). Angew Chem. Int. Ed. Engl. 18, 534 535.

Lindner, E., Rau, A. \& Hoehne, S. (1981a). J. Organomet. Chem. 218, 41-60.

Lindner, E., Rau, A. \& Hoehne, S. (1981b). Angew Chem. Int. Ed. Engl. 20, 788-789.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Thompson, R. L., Lee, S., Rheingold, A. L. \& Cooper, N. J. (1991). Organometallics, 10, 1657-1659.

